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Abstract

It is shown that Levinson's theorem in static potential scattering can

be generalized to a particle dynamically interacting with one-dimensional

matter systems (liquids or solids). A restriction on a particle-matter

interaction is that it decays faster than an inverse quadratic of the

particle-matter separation.
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1. Introduction

Levinson's theorem is one of the classic theorems in scattering theory.

For s-wave motion of a pai :le in a spherically-symmetric potential V(r) in

three dimensions, Levinson showed that the scattering phase shift 6(k) as a

function of incident wave number k is related to the number of s-wave bound

states N as

N - 6(+O)/n (1)

under certain conditions on the potential V(r).
1 ,2 Jauch3 and then Kazes

4

and Ida 5 later developed the method of scattering operator algebra, and

succeeded to generalize the theorem to cases of nonlocal potentials. In

this paper, we shall point out that the theorem can be generalized to the

case of dynamical particle-matter interactions in one dimension (1-d).

A desire for this generalization arose in the course of our recent

study of low-temperature adsorption of atoms on a material surface.
6

Consider a scattering eigenstate characterized by two wave numbers k and k

of the incident particle as shown in Fig. la (the particle motion is in the

xz-plane). The scattering wave function takes an asymptotic form at z -

of

+ ik x -ik z ik z

Ik> -0 e x (e z - S(kx,k z)e z ) (2)

. where f0 represents the matter ground state (T = 0 K for simplicity, and we

assume that the ground state is non-degenerate), and the S-matrix element

S(kx,k z) is in general a function of both k and k . Sometimes S(kx,k z) hasxzx zxz

a weak k X-dependence, whereby the problem becomes essesntially one-

xx

%4

dimensional. One such example is found in recent experiments for 4He atom

scattering from a liquid 4esurface, reporting a weak k -dependence for the

-p.
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reflectance coefficient as a function of k and k.7 Indeed, previouslyx z

people mainly considered a simplified 1-d model of particle-matter

interactions to study low-temperature adsorption (cf. Fig. ib). We note

that a l-d model must be of finite size, because otherwise the matter does

not have a well-defined boundary at finite temperatures, and the question of

calculating, for example, the adsorption probability of a particle becomes
8"i

meaningless. 
8
S.4

A long-standing controversy in low-temperature adsorption based on a

finite 1-d model concerns the importance of correlated motions of a particle

near a material surface.9,10 This is essentially a question on the

importance of many-body effects. We thus encounter an interesting question:

is it possible to dynamically generalize Levinson's theorem? In this paper,

we shall show that there indeed exists a dynamical version of Levinson's

theorem. The only restriction in our arguments is that the potential

created by a maLter system and seen by a particle must decay faster than an

inverse quadratic of the particle-matter separation. We also assume that

the ground state of the matter system is non-degenerate, which in fact is

very likely the case for a finite system without a special symmetry.

We have organized the present paper as follows: In the next section,

as a natural generalization of the static case, we describe a scattering

eigenstate of a finite 1-d model, particularly a Jost function and its

general aspects. In Section 3, we discuss analytic properties of the Jost

solution and Jost function. To do this, again as a natural generalization
11ftesttccs ,I 12

of the static case, we consider an integral Schr6dinger equation for

the Jost solution, and its formal solution in terms of Fredholm series. A .

dynamical generalization of Levinson's theorem is then straightforward

(Section 4). Finally in Section 5, our conclusion is given.

,4A
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2. Scattering Eigenstate

The Hamiltonian for a particle interacting with a matter system is

written in general as

.o H = H(R,P) + V(X,x) + K(p) , (3)

where (R,P) are vector operators describing the positions and momenta of the

matter atoms, and (x,p) describe the position and momentum of the particle.

H(R,P) is a 1-d matter Hamiltonian, K(p) is the kinetic energy of the

particle, and V(X,x) describes the interaction between the particle and the

1-d matter system. Let us use the notations r E (R',x), m = mass of

particle, and .O (R) and EO, respectively, for the ground state of H(R,P)

(T = 0 K) and its energy. For a given total energy E(k) = E0 + 2 k 2/2m, the

Schr~dinger equation

H Ptot (,k) = E(k)*( ,k) (4)

has two independent solutions F(r,±k) with the asymptotic properties at x -

F( ,+k) 0 ( )e ik x  (5)

A..,

.* ,*The scattering state (vr,k) is then given as a linear combination of the

Jost solutions F(r,±k). Noting that (4) is real and *(r,k) is an even

function of k, we can write in general

*(r,k) - -k(f(-k)F([,k) - f(k)F(i,-k)] (6)

To determine the Jost function f(k) in the static case, one imposes the

*%w, condition

*(x = xok) = 0 , (7)

' which is a requirement that the particle cannot reach the point x =x where

03
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the potential energy is large. The corresponding physical condition in our

dynamic case is that

= rck) = 0 (8)

where r is a constant vector independent of k. With a suitable choice of

normalization, one can then take the Jost function f(k) as

f(k) = F(ick) (9)

A remark here is that the vectors r which satisfy the condition (8)

generally form a hypersurface. A consistent situation, therefore, is that

by choosing the Jost function as (9) for a special point r = rc on the

hypersurface, the condition (8) must be automatically satisfied for all the

other points on the hypersurface. In other words, the Jost solutions

F(r,±k) must be strongly correlated.

In the next section, we shall examine an analytic property of the Jost

solution F(r,k) in the complex k-plane, which leads to the same analytic

property of the Jost function f(k) due to (9). Before doing so, let us

mention some general properties of f(k). First, it is seen from (5) and (6)

that tha zeroes of the Jost function f(k) on the n.gative imaginary axis in

the complex k-plane describe the bound states of Ht. In this paper, we

restrict ourselves to those particle-matter potentials which decay faster

than an inverse quadratic of the particle-matter separation. For such

potentials, one can readily see that the number of bound states is finite,

and therefore, except for physically uninteresting accidental situations,

f(0) 0 (10)

Second, the reality of Htt means that

. ...- ,~-. . 2-. ~"** tot-
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H totF*(i,-k*) = E(k)F*(i,-k*) , (11)

but since F*(r,-k*) - Me-ikx as x - , we have

F*(r,-k*) = F(rk) (12)

2 Now since 4P(r,k) as given by (6) is a real, even function of k,

**( ,k*) = *( ,k) (13)

From (6), (12) and (13), we obtain the well-known relationship

f*(-k*) = f(k) (14)

For real k, in particular, upon writing the Jost function as

.'A i6(k)
f(k) = [f(k)ie , (15)

where 6(k) is a scattering phase shift, (10) and (14) give

-6(-k) = 6(k) (16)

under the convention that 6(±-) = 0. A note on (16) is that 6(±-) need not

be the same, so that they are not necessarily zero.

3. Analyticity of the Jost Function

We now discuss an analytic property of the Jost solution in the complex

k-plane, leading to the same analytic property of the Jost function due to

(9). Let us consider the following integral Schr6dinger equation for

FVr,k):

F( ,k) = F0-(,k) + f di' K( ,P';k) F(P',k) , (17)

where the integral kernel is

a.%
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K4,~ )B-~,~)()(8

-ikx
V(-r) SV(Rx), F 0(i,k) B *0(Me- , and the Green's function G(r,P';k) is

defined by

[H(R,P) + K(p) - E(k)]G(i,P';k) 6(i - P') .(19)

Introducing an orthonormal complete basis set (0 ( M) for the matter

Hamiltonian H(R,P), we can write the Green's function G as

dk' eik' (x-x')
G= , J 2 ;k)~(' (20)

E(i) + k'2  k + is

where EMi is the energy difference between the states ()and 0 Rand

2
we have put Ai /2m = 1. In (20) we have added the term ic (E = infinitesmal

positive number) in the denominator to describe an outgoing wave.

In carrying out the k'-integration in (20), as will become clear below,

we need only consider k in the region D surrounded by the contour C:

[-kook 0], [k01k 0-i-o, [k 0-i-%-k -i- and [-k 0-io,-k 0], where k0is an

infinitesmal positive number. On the other hand, our 1-d matter is finite,

and thus the excitation above the ground state has a gap, that is, E(i) > 0.

Therefore, for k in the region D, it is always realized that

E(i,k) B [EMi - k 2 11/ 2 > 0 .(21)

With (21) in mind, we perform a contour integral over k' to obtain

G=~-'k e-E(i~k)x-x'l I o .(' (22)

The integral equation (17) can be solved formally by the Fredhoim

method: 1

Z!2 fill," .. ~ .. ~.
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F(U,k) = F (i,k) + A d A(r)F0(Psk) s (23)0 A J

where

K .. Kin

1 + on dr .. fdr
.'. A = + n1 ' n

n=l K ' K ' (24)Kni .. nn

where K(rir) is abbreviated as K.. and

Krr Kr ... rn
f~f K lr K 11.. l.r,') K(r,r') + . diI fr' 1r in

n=l

Knr '  Knl " Knn

.9. (25)

We note that both F0( ,k) and the kernel K(i,P'), as given by (18) and (22),

are analytic in the region D. Therefore, if the Fredholm series in (24) and

(25) converge, we reach the conclusion that the Jost solution F(r,k) as

given by (23) is also analytic in the region D.

We now show the convergence of A. In a similar way, we can show the

convergence of A(r.r'). We first note that from (18) and Hadamard's

inequality we can write

Jdrl ... f di det Ilkij1n l<i,j<n

<f dxl ... fdxn f d l ... fd~n ,V(rl1)... V(r n),.llglll ... llgn]l

(26)

where 1g01 is the norm of the i-th column vector of the matrix G. Next,

since our k is in the low-energy region D, the excitation of the matter from

,. .... '.... ........... .......... '...,.... ...... .......... ... .... ...... .. ...........
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its ground state is limited to a finite number of low-lying excited

C 1 .:

states, i.e., with some integer 1, (22) gives

IGI (27)Irr, I <_2E(i,k) ( 7

i<I

The wave functions of low-lying excited states are well localized in the R-

space, and therefore, when carrying out the integrations JdR, ... dXn in

(26), one can apply the average-value theorem. This means that there exists

a certain constant vector R 0 and finite constants A and B such that

fd l ' fd~n  IV(r I  ... V n)I'l1gl1i ... I]gnII,'

= IV(Rox 1 l )I ... IV(1OX1n)I f {R 1 . f 1II .. 1II

< IV(RoX)I ... IV(RoXn) I An(Bnl/2)n (28)

Physically, R0 describes a most probable configuration of the matter atoms

at low temperatures. We finally note that since our IV(%0,x)I decays faster

-2
than x at x - by assumption,

f dx IV(,x)I < M < . (29)

From (26), (28) and (29) we obtain

)n n/2 (30)

1<i,j<n ,-I

which assures the convergence of 6.

,. 4. Dynamical Levinson's Theorem

In the preceding sections, we have discussed some general properties of

the Jost function f(k) and its analytic property in the complex k-plane. We

) are now ready to claim the existence of dynamical Levinson's theorem in a

,d",

~.** *.~* . . . . . . . . . . ?
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similar manner as in the .tatic potential scattering:

Nb = - J~ t' k I 1 d[lnftk)]b 2-1 iik T1 k? i fC

= - (- cJ -0 +] ] = + )- ,I

where N b is the number of bjund states of Hto t  and the contour C is as

given in Fig. 2. This can be seen as follows: since the Jost function f(k)

is analytic in the region D surrounded by the contour C, the integrand

f'(k)/f(k) has simple poles of unit strength at zeroes of f(k), each of

which corresponds to a bound state. For q degenerate bound states, the

strength of the corresponding pole is q. This is the first equality in

(31). The remaining equalities in (31) are trivial from (10), (15), (16)

and the anaivticitv of f(k) in the region D.

5. Conclusion

In this paper, we have considered a l-d model which describes a

particle dynamically interacting with a finite l-d matter. We have shown

that if the matter has a non-degenerate ground state and is well-localized

in space, and hence the collision of the particle with the matter is well-

defined, and if the particle-matter potential decays faster than an inverse

quadratic of the distance, there exists a dynamical version of Levinson's

theorem, connecting the zero-energy phase shift 6(+0) to the number of bound

states of the total system. This dynamical Levinson's theorem has recently

6
played an essential role in the study of low-temperature adsorption.

Furthermore, in light of its general, many-body character, we expect its

fruitful applications in other physical problems.

M7
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Figure Captions

Fig. 1 (a) Three-dimensional geometry for the scattering eigenstate

characterized by the parallel and perpendicular wave numbers,

k and k
x Z

(b) Its one-dimensional simplification when the parallel and

perpendicular motions are approximately separable.

Fig. 2 The contour C in the integral of (31). The crosses on the negative

imaginary axis denote the zeroes of the Jost function f(k).
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